Getting Started With
MAKER UNO
Edu Kit (Arduino Compatible)

Start Making Something!
INTRODUCTION

Introduction to Components
- Maker UNO 5
- Maker UNO Board 6

Setting Up
- Download Arduino IDE 7
- Install Maker UNO Drivers 11

LESSONS

1. The LED (Digital Output) 16
2. LED Blinking 19
3. LED Output (PWM) 22
4. Push Button as Digital Input 25
5. Serial Write 28
6. Serial Read 31
7. Tone Melody 34
8. Potentiometer as Analog Input 37
9. LDR as Analog Input 41
10. Controlling Motor 45

PROJECTS

Interactive Traffic Light 50
Light Theremin 53
INTRODUCTION
MAKER-UNO

Maker UNO, an Arduino UNO compatible board designed and developed specially for students to learn coding and microcontroller. We named it Maker UNO to encourage everyone to be a maker by getting started with this amazing board.

MAKER - UNO Features:
- SMD ATmega328P microcontroller (the same microcontroller on Arduino UNO) with Optiboot (UNO) Bootloader.
- USB Programming facilitated by the CH340.
- Input voltage: USB 5V, from computer, power bank or standard USB adapter.
- 500mA (maximum) 3.3V voltage regulator.
- 0-5V outputs with 3.3V compatible inputs.
- 14 Digital I/O Pins (6 PWM outputs).
- 6 Analog Inputs.
- ISP 6-pin Header.
- 32k Flash Memory.
- 16MHz Clock Speed.
- R3 Shield Compatible.
- LED array for 5V, 3.3V, TX, RX and all digital pins.
- On board programmable push button (pin 2, need to configure as INPUT_PULLUP).
- On board piezo buzzer (pin 8).
- Utilize USB Micro-B socket.
- PURPLE PCB!
MAKER-UNO BOARD

Piezo Buzzer Slide Switch
Slide switch to connect between pin 8 to piezo buzzer. To use piezo buzzer, slide the switch on and program the buzzer. To use pin 8 for other purpose, slide the switch off.

Piezo Buzzer
Piezo buzzer is connected to pin 8 through slide switch.

Power Pin
- GND - Ground Pins
- 5V - Regulated 5V output
- 3V3 - Regulated 3.3v supply

Analog Pin
This pin can be used with analogRead(); to read an input in analog form (0-1023)

Digital Pin
This pin can be used with:
- digitalRead(); as an input
- digitalWrite(); as an output

PWM Pin
The digital pin that has this symbol can only use analogWrite(); to control the output. (0-255)

Micro USB B Type Connector (Female)
Main supply for Maker Uno. Used for program and debug purpose (Serial Monitor) too.

Reset Button
Button to restart Maker UNO program.

Programmable Button
This button is connected to pin 2 and GND. To use it, user need to configure it as INPUT_PUL-LUP.

Series of LED for Digital I/O
Every digital IO is equipped with LED, where you can control it or make it as indicator for input.

INTRODUCTION TO COMPONENTS
MAKER UNO Edu Kit
The Most Affordable Arduino Kit to Kickstart Your Arduino Class

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Maker UNO x 1</td>
</tr>
<tr>
<td>2.</td>
<td>USB Micro B Cable x 1</td>
</tr>
<tr>
<td>3.</td>
<td>LED 5mm Red x 3</td>
</tr>
<tr>
<td>4.</td>
<td>LED 5mm Yellow x 3</td>
</tr>
<tr>
<td>5.</td>
<td>LED 5mm Green x 3</td>
</tr>
<tr>
<td>6.</td>
<td>Breadboard (Small) x 1</td>
</tr>
<tr>
<td>7.</td>
<td>40 Ways Male to Male Jumper Wire x 1</td>
</tr>
<tr>
<td>8.</td>
<td>Resistor 0.25W 5% (220Ω) x 10</td>
</tr>
<tr>
<td>9.</td>
<td>Resistor 0.25W 5% (1k) x 5</td>
</tr>
<tr>
<td>10.</td>
<td>Resistor 0.25W 5% (10k) x 5</td>
</tr>
<tr>
<td>11.</td>
<td>LDR (Small) x 1</td>
</tr>
<tr>
<td>12.</td>
<td>Transistor 2N2222 x 1</td>
</tr>
<tr>
<td>13.</td>
<td>Finger Adjust Preset 10K x 1</td>
</tr>
<tr>
<td>14.</td>
<td>3V Miniature Brush Motor w/o Gear x 1</td>
</tr>
<tr>
<td>15.</td>
<td>DIY 4 Blades 56mm Motor Propeller x 1</td>
</tr>
<tr>
<td>16.</td>
<td>Plastic Box x 1</td>
</tr>
</tbody>
</table>
DOWNLOADING ARDUINO IDE

Maker UNO requires Arduino software to run. You can download the software from Arduino website (http://arduino.cc/en/Main/Software) and it is free to use.

Arduino IDE is compatible with Windows, Mac OS X and also Linux. You just need to choose the appropriate operating system installation package for your computer.

*Note: If you are a Windows user, it is recommended that you choose Windows (installer).
Choose the installer that compatible with your laptop OS and download the Arduino IDE. You will have arduino-1.8.x-windows.exe software after finish downloading for Windows OS user while for Mac OS user, you will get a zip file of arduino-1.8.x-macosx zip file as shown below:

*Note: For latest version of Arduino IDE, go to https://www.arduino.cc/en/Main/Software

Double-click on the icon to install Arduino IDE. Complete the download, proceed with the installation as usual. After finish installing the software, you can start using it by double-click on the icon. Then, you will see this layout of Arduino IDE.
Setting Up

A Menu Bar

B Button Bar

C Serial Monitor

D Sketch Name

E Code Area

F Status Bar

G IDE Output

H Board Name and COM Number

Invalid library found in C:\Users\Cytron Documents\Arduino\libraries
Open Serial Monitor.

Verify
Compiles and approves your code. It will detect errors in syntax (e.g. missing semi colon or parentheses).

Upload
Sends your code to the Maker UNO. When you click it, you should see the lights on your board blink rapidly.

New Sketch
This button opens up a new code window tab.

Open
This button will let you open an existing sketch.

Save
This saves the currently active sketch.
INSTALLING MAKER UNO DRIVER

Download Maker UNO driver at Maker Uno product page (under Attachment tab). Please choose appropriate driver depends on your OS. Complete the download, proceed with the installation as usual.

After installation is complete, your Maker UNO port should appears at Device Manager under Ports (COM & LPT) - e.g. USB-SERIAL CH340 (COM3). Please remember the port number.
Select Board:

Select Serial Port:
LESSON 1:
THE LED (DIGITAL OUTPUT)
LESSON 1: LIGHT UP THE LED (IDE)

1. Open new sketch on Arduino IDE.
2. Write this code to your sketch:

```c
void setup() {
  // put your setup code here, to run once:
  pinMode(7, OUTPUT);
}

void loop() {
  // put your main code here, to run repeatedly:
  digitalWrite(7, HIGH);
}
```

LED is a light emitting diode. It will light up when a proper voltage is applied in correct direction.
The *void setup()* runs once when the Maker UNO is powered on. The code in the void setup() usually use to configure the pin as INPUT or OUTPUT using `pinMode();`

The *void loop()* runs continuously after the void loop() has complete. The code in the void loop() usually use to control the INPUT and OUTPUT. *The digitalWrite();* is used to set the digital OUTPUT of the pin number to HIGH or LOW.

Compile the file.

Upload the sketch.

You will see status of “Done Uploading” if everything is correct your LED at pin 7 will light up.
LESSON 2: LED (BLINKING)
LESSON 2:
LED BLINKING (IDE)

1. Open new sketch on Arduino IDE.

2. Write this code to your sketch:

   ```cpp
   void setup()
   {
     pinMode(7, OUTPUT);
   }

   void loop()
   {
     digitalWrite(7, HIGH);
     delay(1000);
     digitalWrite(7, LOW);
     delay(1000);
   }
   ```

 LED will blink when `delay` is applied between ON and OFF. Then it will blinking!
The `digitalWrite(7, HIGH);` digital pin number 7 is set to HIGH which is to turn ON the LED while the `digitalWrite(7, LOW);` digital pin number 7 is set to LOW which is to turn OFF the LED.

The `delay();` is a function to make the Maker UNO execute anything for the time set in milliseconds. 1000 is equal to 1 second.
LESSON 3: FADE AN LED
LESSON 3: FADE AN LED (IDE)

1. Open new sketch on Arduino IDE.

2. Write this code to your sketch:

```cpp
int LED = 3;
int brightness = 0;
int fadeAmount = 5;

void setup()
{
    pinMode(LED, OUTPUT);
}

void loop()
{
    analogWrite(LED, brightness);
    brightness = brightness + fadeAmount;
    if (brightness <= 0 || brightness >= 255)
    {
        fadeAmount = -fadeAmount;
    }
    delay(30);
}
```

The LED will fade using analogWrite() function using Pulse Width Modulation (PWM) which make a digital output acting as analog output.
The `analogWrite()` function uses PWM, so if you want to change the pin you’re using, be sure to use another PWM capable pin. On most Arduino, the PWM pins are identified with a "~" sign, like ~3, ~5, ~6, ~9, ~10 and ~11.

The `analogWrite(LED, brightness);` set OUTPUT of the pin number 3 to variable “brightness”. The LED will light up based on the amount of variable “brightness”.

3. Compile the file.

4. Upload the sketch.

5. You will see status of “Done Uploading” if everything is correct and your LED will fade.
LESSON 4: PUSH BUTTON (DIGITAL INPUT)
LESSON 4: PUSH BUTTON (IDE)

1. **Open new sketch on Arduino IDE.**

2. **Write this code to your sketch:**

   ```cpp
   int LED = 4;
   int Button = 2;

   void setup()
   {
     pinMode(4, OUTPUT);
     pinMode(2, INPUT_PULLUP);
   }

   void loop()
   {
     if (digitalRead(Button) == LOW)
       digitalWrite(LED, HIGH);
     else if (digitalRead(Button) == HIGH)
       digitalWrite(LED, LOW);
   }
   ```

i Push button act as a digital input device. Maker UNO is able to sense 2 states for digital input, i.e. HIGH and LOW. Push the button and the LED will turn ON!
Using `pinMode(INPUT_PULLUP)`, there is an internal 20K-ohm resistor pulled to 5V. This configuration causes the input to read HIGH when the switch is open, and LOW when it is closed.

The `if()` statement is use to compare a condition whether it is `TRUE` or `FALSE`. The `else if()` statement is use to set other condition than `if()` statement. The `digitalRead(Button) == LOW);` will read the button input. If the button is pushed, the INPUT will be LOW.

You will see status of “Done Uploading” if everything is correct, when button is pressed, the LED pin 4 will light up.
LESSON 5: SERIAL WRITE
Lessons 5:
SERIAL WRITE (IDE)

1. Open new sketch on Arduino IDE.

2. Write this code to your sketch:

```c
void setup()
{
  Serial.begin(9600);
  Serial.print("Hello, World!");
}

void loop()
{
}
```
The `Serial.begin();` open a serial communication between the Maker UNO and the computer. **9600** is the baud rate of the communication. The serial monitor must use the same baud rate to view the information.

The `Serial.print();` sends information from Maker UNO to the connected computer. The information will be in the serial monitor.

The `Serial.println();` sends information from Maker UNO to the connected computer. The information will be in the serial monitor and print out line by line.

Compile the file.

Upload the sketch.

You will see the Button status through the Serial Monitor. Press the button to see the result!

Click on the symbol to see the result!
LESSON 6: SERIAL READ
LESSON 6: SERIAL READ (IDE)

Serial display can display numbers and characters (based on ASCII data) on the Arduino Serial Monitor. Click on the 📰 symbol to enter the input.

1. Open new sketch on Arduino IDE.

2. Write this code to your sketch:

```cpp
int LED = 7;
int data = 0;

void setup()
{
  pinMode(LED, OUTPUT);
  Serial.begin(9600);
}

void loop()
{
  if(Serial.available() > 0 )
  {
    data = Serial.read();
    if(data == '1')
    {
      digitalWrite(LED, HIGH);
    }
    else if(data == '0')
    {
      digitalWrite(LED, LOW);
    }
  }
}  
```

Invalid library found in C:/Users/Cytron/Documents/Arduino/libraries
Invalid library found in C:/Users/Cytron/Documents/Arduino/libraries
The `Serial.available()` get the number of bytes (characters) available for reading from the serial port. The `Serial.read()` reads all the incoming data in Maker UNO.

You can turn on the LED pin 7 by inserting the letter “1” and turn it off using “0” at the Serial Monitor.

3. Compile the file.
4. Upload the sketch.

The `Serial.available()` get the number of bytes (characters) available for reading from the serial port. The `Serial.read()` reads all the incoming data in Maker UNO.
LESSON 7: TONE MELODY
Go to File > Examples > 02. Digital > toneMelody
Compile the file.

Upload the sketch.

You can change the music note based on your preference and enjoy the music tone.

You can refer to the next tab `pitches.h` for more music note!
LESSON 8: POTENTIOMETER AS ANALOG INPUT
LESSON 8: POTENTIOMETER ANALOG INPUT (IDE)

1. Open new sketch on Arduino IDE.

2. Write this code to your sketch:

```cpp
int sensorPin = A0;
int ledPin = 13;
int sensorValue = 0;

void setup()
{
    pinMode(ledPin, OUTPUT);
}

void loop()
{
    sensorValue = analogRead(sensorPin);
    digitalWrite(ledPin, HIGH);
    delay(sensorValue);
    digitalWrite(ledPin, LOW);
    delay(sensorValue);
}
```
Turn the potentiometer and you will see the blinking speed change.

3. **Compile** the file.

4. **Upload** the sketch.

5. Turn the potentiometer and you will see the blinking speed change.
1. Open new sketch on Arduino IDE.

2. Write this code to your sketch:

```cpp
int LDR = A0;
int ledPin = 13;
int LDRvalue = 0;

void setup()
{
    pinMode(ledPin, OUTPUT);
}

void loop()
{
    LDRvalue = analogRead(LDR);
    if(LDRvalue > 600)
    {
        digitalWrite(ledPin, HIGH);
    }
    else
    {
        digitalWrite(ledPin, LOW);
    }
}
```
When it is dark, the LED on pin 13 will light up.

1. **Compile** the file.
2. **Upload** the sketch.
3. When it is dark, the LED on pin 13 will light up.
LESSON 10: CONTROLLING MOTOR
Open new sketch on Arduino IDE.

Write this code to your sketch:

```cpp
void setup()
{
    pinMode(6, OUTPUT);
}

void loop()
{
    analogWrite(6, 255); // same with HIGH
    delay(1000);
    analogWrite(6, 123);
    delay(1000);
    analogWrite(6, 50);
    delay(1000);
    analogWrite(6, LOW); // same with 0
    delay(1000);
}
```
The motor will rotate with 4 different speed.

3. **Compile** the file.

4. **Upload** the sketch.

5. The motor will rotate with 4 different speed.
INTRODUCTION
Interactive Traffic Light is a combination of standard traffic light for vehicles and traffic light for pedestrian.

This project applies knowledge outcome from:
Lesson 1: Light Up LED
Lesson 4: Push Button as Digital Input

INGREDIENTS
a. Maker UNO - 1x
b. Breadboard - 1x
c. Red LED - 2x
d. Green LED - 2x
e. Yellow LED - 1x
f. Resistor 220Ω - 5x
g. Jumper wires

INSTRUCTION
By using all the parts above, create a simple traffic light system for a pedestrian crossing. Normally, the traffic light is green. But when the push button is pressed, the light will switch to yellow for two seconds, then to red. After 1 more second, the green pedestrian light will light up for 5 seconds, then turns back to red. After 1 more second, the traffic light turns green again.
HARDWARE CONNECTION

SCHEMATIC DIAGRAM
const int greenLedVehicle = 5;
const int yellowLedVehicle = 6;
const int redLedVehicle = 7;
const int greenLedPedestrian = 3;
const int redLedPedestrian = 4;
const int pushButton = 2;

void setup()
{
 pinMode(greenLedVehicle, OUTPUT);
 pinMode(yellowLedVehicle, OUTPUT);
 pinMode(redLedVehicle, OUTPUT);
 pinMode(greenLedPedestrian, OUTPUT);
 pinMode(redLedPedestrian, OUTPUT);
 pinMode(pushButton, INPUT_PULLUP);

 digitalWrite(greenLedVehicle, HIGH);
 digitalWrite(redLedPedestrian, HIGH);
}

void loop()
{
 if(digitalRead(pushButton) == LOW)
 {
 digitalWrite(greenLedVehicle, LOW);
 digitalWrite(yellowLedVehicle, HIGH);
 delay(2000);
 digitalWrite(yellowLedVehicle, LOW);
 digitalWrite(redLedVehicle, HIGH);
 delay(1000);
 digitalWrite(redLedPedestrian, LOW);
 digitalWrite(greenLedPedestrian, HIGH);
 delay(5000);
 digitalWrite(greenLedPedestrian, LOW);
 digitalWrite(redLedPedestrian, HIGH);
 delay(1000);
 digitalWrite(redLedVehicle, LOW);
 digitalWrite(greenLedVehicle, HIGH);
 }
}
INTRODUCTION

A theremin is an instrument that makes sounds based on the movements of a musician’s hands around the instrument. This project will use LDR as an input where the amount of light intensity will determine the melody notes.

This project applies knowledge outcome from:
Lesson 3: Create Melody with Piezo
Lesson 8: Light Dependent Resistor

INGREDIENTS

a. Maker UNO - 1x
b. Breadboard - 1x
c. Resistor 10kΩ - 1x
d. LDR - 1x
e. Jumper wires

INSTRUCTION

Using all the parts above create an instrument that creates melody played by piezo depends on your hand position. The closer your hand is to the LDR, the higher the notes produced. When you withdraw your hand, no sound will be generated. So, enjoy the melody you create!

Note: To calibrate the sensor, move your hand up and down over the LDR for 5 seconds to change the amount of light that reaches it. The closer you replicate the motions you expect to use while playing the instrument, the better the calibration will be.
```c
#include "pitches.h"

int melody[49] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
NOTE_C2, NOTE_D2, NOTE_E2, NOTE_F2, NOTE_G2, NOTE_A2, NOTE_B2,
NOTE_C3, NOTE_D3, NOTE_E3, NOTE_F3, NOTE_G3, NOTE_A3, NOTE_B3,
NOTE_C4, NOTE_D4, NOTE_E4, NOTE_F4, NOTE_G4, NOTE_A4, NOTE_B4,
NOTE_C5, NOTE_D5, NOTE_E5, NOTE_F5, NOTE_G5, NOTE_A5, NOTE_B5,
NOTE_C6, NOTE_D6, NOTE_E6, NOTE_F6, NOTE_G6, NOTE_A6, NOTE_B6
};
int sensorValue = 0;
int sensorLow = 1023;
int sensorHigh = 0;
const int ledPin = 13;

void setup()
{
    pinMode(ledPin, OUTPUT);
    digitalWrite(ledPin, HIGH);

    // Calibrate for the first five seconds after program runs
    while(millis() < 5000)
    {
        sensorValue = analogRead(A0);
        if(sensorValue > sensorHigh)
            sensorHigh = sensorValue;
        if(sensorValue < sensorLow)
            sensorLow = sensorValue;
    }
    digitalWrite(ledPin, LOW);
}

void loop()
{
    sensorValue = analogRead(A0);
    int pitch = map(sensorValue, sensorLow, sensorHigh, 48, 0);
    tone(8, melody[pitch], 50);
    delay(50);
    noTone(8);
    delay(150);
}
```